If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-49x+13=0
a = 1; b = -49; c = +13;
Δ = b2-4ac
Δ = -492-4·1·13
Δ = 2349
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2349}=\sqrt{81*29}=\sqrt{81}*\sqrt{29}=9\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-9\sqrt{29}}{2*1}=\frac{49-9\sqrt{29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+9\sqrt{29}}{2*1}=\frac{49+9\sqrt{29}}{2} $
| 42a+88=328 | | -7(x+3)+3x+5=5x+6 | | 3n-(18+15n)=4n | | -12x+22=64 | | (t+2)^2=2t^2+5t-2 | | -2x+15=100 | | (17+2)1/2=h | | 17=33-3(-1-4x) | | -6x-7x=-7-48 | | 2-15n=-5(-3n+2 | | -2/3x-1/2=6 | | x/3-11=29 | | 9x-42=121 | | -5/3+y=-1/12-5/6 | | 602+4x=762 | | (2t+2)^2=2t^2+5t-2 | | h/(17+2)=1/2 | | 7t-2-4t=5+3t | | (33-a)+a=0 | | 17+2=h*(1/2) | | 142+1x=742 | | 37=45-6(-1-1x) | | 1u-9=-7u+7 | | (5p+5)=-8+-2(p+12) | | 9z=3z-48 | | 6p-(5p+5)=-8+-2(p+12 | | -3p-5=-12+2p | | 3x2+18x+-27=0 | | 9d*2d+4d-7=2d | | 4x+5(2x-5)=-39 | | 21,000=t+600 | | 2x-6=5x+18= |